Кишкова проникність та її роль у патогенезі метаболічно-асоційованих захворювань. Огляд літератури
DOI:
https://doi.org/10.30978/UTJ2023-1-44Ключові слова:
кишкова проникність, ліпополісахарид, кишковий бар’єрАнотація
Висвітлено значення проникності кишкового бар’єра в патогенезі «метаболічних захворювань» (цукровий діабет, ожиріння тощо). Показано, що нормальна кишкова мікробіота відіграє важливу роль у підтримці цілісності кишкового епітеліального бар’єра, а порушення її гомеостазу значно впливає не лише на проникність кишечника, а й на системні запальні процеси, імунну функцію, резистентність до інсуліну та ліпідний обмін. Визначено, що «західна» дієта забезпечує мікробіоту інструментами, необхідними для протидії імунній системі господаря. Ці зміни можуть руйнувати кишковий бар’єр і спричинити розвиток метаболічної ендотоксинемії. Підвищена проникність кишечника для ендотоксину відіграє ключову роль у розвитку метаболічних змін унаслідок посиленої транслокації продуктів життєдіяльності бактерій та призводить до розвитку як місцевого, так і системного запалення низької градації. Кишкова мікробіота, впливаючи на метаболічні процеси у жировій тканині та печінці через зміну кишкової проникності, може спричинити системну резистентність до інсуліну і порушити регуляцію рівня глюкози. Зміни у взаємозв’язках між імунними клітинами кишечника та мікробіомом призводять до аберантних запальних перекосів і пов’язані з порушенням кишкового бар’єра, прогресуванням метаболічних захворювань та інсулінорезистентністю. Імунні клітини кишечника регулють біодоступність гормонів шлунково‑кишкового тракту, які контролюють рівень глюкози в крові та впливають на проникність кишкового бар’єра. Аномалії у щільних з’єднаннях міжклітинних зв’язків у кишечнику пов’язані з метаболічними та запальними захворюваннями. Порушення бар’єрної функції кишечника підтверджено як на тваринних моделях метаболічно‑асоційованих захворювань, так і у дослідженнях за участю людей. Зазначено, що бар’єрна дисфункція є важливою причиною метаболічного синдрому. Наведено дані щодо впливу коригування способу життя (зміни в раціоні харчування, фізичні вправи) і терапевтичних стратегій (метформін, пребіотики та пробіотики, баріатрична хірургія) на проникність кишечника.
Посилання
Albillos A, Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2019;72:558-577. http://doi.org/10.1016/j.jhep.2019.10.003.
Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr (2008) 87:1219-23. http://doi.org/ 10.1093/ajcn/87.5.1219.
Amit-Romach E, Uni Z, Cheled S, Berkovich Z, Reifen R. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J Nutr Biochem. 2008;20:70-7, 2009. http://doi.org/10.1016/j.jnutbio.2008.01.002.
Araki Y, Fujiyama Y, Andoh A, et al. Hydrophilic and hydrophobic bile acids exhibit different cytotoxicities through cytolysis, interleukin-8 synthesis and apoptosis in the intestinal epithelial cell lines. IEC-6 and Caco-2 cells. Scand J Gastroenterol. 2001;36:533-9. http://doi.org/10.1080/003655201750153430.
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. USA. 2004;101:15718-23. http://doi.org/10.1073/pnas.0407076101.
Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356-68. http://doi.org/10.1038/nrmicro2546.
Bhat A, Uppada S, Achkar IW, et al. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk. Front Physiol. 2019;10:1-19. 10.3389/fphys.2018.01942.
Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. http://doi.org/10.1186/s12876-014-0189-7.
Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A. Alcohol and gut-derived inflammation. Alcohol Res Curr Rev. 2017;38(2):163-71.
Björkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med. 2004;10:416-21. http://doi.org/10.1038/nm1008.
Blyth GA, Connors L, Fodor C, Cobo ER. The network of colonic host defense peptides as an innate immune defense against enteropathogenic bacteria. Front Immunol. 2020;11:965. http://doi.org/10.3389/fimmu.2020.00965.
Bock KW. Aryl hydrocarbon receptor (AHR) functions in NAD (+) metabolism, myelopoiesis and obesity. Biochem. Pharmacol. 2019;163:128-32. http://doi.org/10.1016/j.bcp.2019.02.021.
Boutagy NE, McMillan RP, Frisard M, Hulver MW. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 2016;124:11-20. http://doi.org/10.1016/j.biochi.2015.06.020.
Brandenburg K, Marx G, Schuerholz T. Antimicrobial peptides and their potential application ininflammation and sepsis. Crit Care. 2012;16(2):207. http://doi.org/10.1186/cc11220.
Brestoff JR, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519:242-6. http://doi.org/10.1038/nature14115.
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22:658-68. http://doi.org/10.1016/j.cmet.2015.07.026.
Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol. 2019;317:G17–G39. http://doi.org/10.1152/ajpgi.00063.2019.
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68:1516-26. http://doi.org/10.1136/gutjnl-2019-318427.
Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761-72. http://doi.org/10.2337/db06-1491.
Cao W, et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity. 2017;47:1182-96.e1110. http://doi.org/10.1016/j.immuni.2017.11.012.
Chassaing B, Raja SM, Lewis JD, Srinivasan S, Gewirtz AT. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell Mol Gastroenterol Hepatol. 2017;4:205-21. http://doi.org/10.1016/j.jcmgh.2017.04.001.
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:103. http://doi.org/10.1038/s12276-018-0126-x.
Chen K, Chen H, Faas MM, et al. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol Nutr Food Res. 2017;61. http://doi.org/10.1002/mnfr.201601006.
Chen P, Starkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology. 2015;61(3):883-94.
Chen Z, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Investig. 2014;124:3391-406. http://doi.org/10.1172/JCI72517.
Cipriani S, Mencarelli A, Chini MG, et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One. 2011;6:e25637. [Erratum in PLoS One 8:2013.] doi: 10.1371/journal.pone.0025637.
Coëffier M, Marion R, Ducrotté P, Déchelotte P. Modulating effect of glutamine on IL-1β-induced cytokine production by human gut. Clin Nutr. 2003;22:407-13. http://doi.org/10.1016/S0261-5614 (03)00040-2.
Coleman MJ, Espino LM, Lebensohn H, et al. Individuals with metabolic syndrome show altered fecal lipidomic profiles with no signs of intestinal inflammation or increased intestinal permeability. Metabolites. 2022 May; 12 (5):431. http://doi.org/10.3390/metabo12050431.
Cox AJ, Zhang P, Bowden DW, Devereaux B, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab. 2017;43:163-6. http://doi.org/10.1016/j.diabet.2016.09.004.
Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol — Endocrinol Metab. 2007;292:740-7. http://doi.org/10.1152/ajpendo.00302.2006.
De Meyts P, Delzenne N. Editorial: The brain—gut—microbiome network in metabolic regulation and dysregulation. Front. Endocrinol. 2021;12:760558. http://doi.org/10.3389/fendo.2021.760558.
De Paula VS, Valente AP. A dynamic overview of antimicrobial peptides and their complexes. Molecules. 2018;23(8):2040. http://doi.org/10.3390/molecules23082040.
den Besten G, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398-408. http://doi.org/10.2337/db14-1213.
Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2005;5:135-44. http://doi.org/10.1016/j.apsb.2015.01.004.
Ding Y, Subramanian S, Montes VN, Goodspeed L, Wang S. Toll-like receptor 4 eficiency decreases atherosclerosis but doesnot rpotect against inflammation inobese LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2013;32:1596-604. http://doi.org/10.1161/ATVBAHA.112.249847.
Do MH, Lee E, Oh MJ, Kim Y, Park HY. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients. 2018;10.
Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes. 2015;64:1794-803. http://doi.org/10.2337/db14-0635.
Fabbiano S, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 2018;28:907-21.e907. http://doi.org/10.1016/j.cmet.2018.08.005.
Fang S, et al. Intestinal FX. R. agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 2015;21:159-65. http://doi.org/10.1038/nm.376.
Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients. 2020;1185:12. http://doi.org/10.3390/nu12041185.
Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4:15-21. http://doi.org/10.1038/mi.2010.60.
Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009;30:570-80. http://doi.org/10.1016/j.tips.2009.08.001.
Frontiera MS, Stabler SP, Kolhouse JF, Allen RH. Regulation of methionine metabolism: effects of nitrous oxide and excess dietary methionine. J Nutr Biochem. 1994;5:28-38. http://doi.org/10.1016/0955-2863 (94)90006-X.
Gabele E, Muhlbauer M, Dorn C, et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 2008;376:271-6. http://doi.org/10.1016/j.bbrc.2008.08.096.
Garidou L, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22:100-12. http://doi.org/10.1016/j.cmet.2015.06.001.
Garcia MA, Nelson WJ, Chavez N. Cell-cell junctions organize structural and signaling networks toregulate epithelial tissue homeostasis. Cold Spring Harb PerspectBiol. 2018;10(4). http://doi.org/10.1101/cshperspect.a029181.
Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta — Biomembr. 2008;1778:572-87. http://doi.org/10.1016/j.bbamem.2007.07.014.
Ghanim H, Abuaysheh S, Sia CL, et al. Increase in plasma endotoxin concentrations and the expression oftoll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat,high-carbohydrate meal. Diabetes Care. 2009;32 (12):2281-7. http://doi.org/10.2337/dc09-0979.
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392-400. http://doi.org/10.1038/nm.4517.
Goettel JA, et al. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 2016;17:1318-29. http://doi.org/10.1016/j.celrep.2016.09.082.
Greer RL, et al. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat. Commun. 2016;7:13329. http://doi.org/10.1038/ncomms13329.
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief. 2020;360:1-8.
Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35:375-82. http://doi.org/10.2337/dc11-1593.
He S, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-9. http://doi.org/10.1038/s41586-018-0849-9.
Hendy OM, Elsabaawy MM, Aref MM, et al. Evaluation of circ ulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease. APMIS. 2017;125(7):607-13.
Hodin CM, Verdam FJ, Grootjans J, et al. Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J Pathol. 2011;225:276-84. 10.1002/path.2917.
Hurst RD, Lyall KA, Wells RW, et al. Daily consumption of an anthocyanin-rich extract made from New Zealand blackcurrants for 5 weeks supports exercise recovery through the management of oxidative stress and inflammation: a randomized Placebo Controlled Pilot Study. Front Nutr. 2020;7:16,. http://doi.org/10.3389/fnut.2020.00016.
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci US. A. 2006;103:3920-5. http://doi.org/10.1073/pnas.0509592103.
Ishimoto T, Lanaspa MA, Rivard CJ, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58:1632-43. 10.1002/hep.26594.
Iyer SS, et al. Dietary and microbial oxazoles induce intestinal inflammation by modulating Aryl hydrocarbon receptor responses. Cell. 2018;173:1123-34.e1111. http://doi.org/10.1016/j.cell.2018.04.037.
Jain S, Suzuki T, Seth A, Samak G, Rao R. Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochem J. 2011;437:289-99. http://doi.org/10.1042/BJ20110587.
Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015;2015:794143. http://doi.org/10.1155/2015/794143.
Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil. 2018;30:e13178. http://doi.org/10.1111/nmo.13178.
Jordan S, et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell. 2019;178:1102-14.e1117. http://doi.org/10.1016/j.cell.2019.07.050.
Judkins TC, Archer DL, Kramer DC, Solch RJ. Probiotics, nutrition, and the small intestine. Curr Gastroenterol Rep. 2020;22:2. http://doi.org/10.1007/s11894-019-0740-3.
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:1-8. http://doi.org/10.3389/fimmu.2014.00461.
Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 2020;38:23-48. http://doi.org/10.1146/annurev-immunol-070119-115104.
Kern T, et al. Structured exercise alters the gut microbiota in humans with overweight and obesity—a randomized controlled trial. Int. J. Obes. 2019:125-35.
Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol. 1999;94:200-207. http://doi.org/10.1111/j.1572-0241.1999.00797.x.
Khan S, Luck H, Winer S, Winer DA. Emerging concepts in intestinal immune control of obesity-related metabolic disease Nat Commun. 2021;12:2598. http://doi.org/10.1038/s41467-021-22727-7.
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol. 2020 Nov 1;319(5):G589–G608. http://doi.org/10.1152/ajpgi.00245.2020.
Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221-36. http://doi.org/10.2147/DMSO.S216791.
Koscsó B, et al. Gut-resident CX3CR1 hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci. Immunol. 2020:5, eaax0062.
Kowalczyk AP, Green KJ. Structure, function and regulation of desmosomes. Prog Mol Biol Transl Sci. 2013;116:95-118. http://doi.org/10.1016/B978-0-12-394311-8.00005-4.
Krishnan M, Penrose HM, Shah NN, Marchelletta RR, McCole DF. VSL#3 probiotic stimulates T-cell protein tyrosine phosphatase-mediated recovery of IFN-γ-induced intestinal epithelial barrier defects. Inflamm Bowel Dis. 2016;22:2811-22. http://doi.org/10.1097/MIB.0000000000000954.
Lassenius MI, Pietilainen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34:1809-15. http://doi.org/10.2337/dc10-2197.
Lécuyer E, Le Roy T, Gestin A, et al. Tolerogenic dendritic cells shape a transmissible gut microbiota that protects from metabolic diseases. Diabetes. 2021;70:2067-80. http://doi.org/10.2337/db20-1177.
Lee JJ, Wang PW, Yang IH, et al. High-fat diet induces toll-like receptor 4-dependent macrophage/Microglial cell activation and retinal impairment. Investig Ophthalmol Vis Sci. 2015;56:3041-50. http://doi.org/10.1167/iovs.15-16504].
Lee JY, Wasinger VC, Yau YY, Chuang E, Yajnik V, Leong RW. L. Molecular pathophysiology of epithelial barrier dysfunction in inflammatory bowel diseases. Proteomes. 2018;6:1-17. http://doi.org/10.3390/proteomes6020017.
Lee SH. Intestinal Permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015;13(1):11. http://doi.org/10.5217/ir.2015.13.1.11.
Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016;13:412-25. http://doi.org/10.1038/nrgastro.2016.85.
Li B, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 2019;26:2720-37.e2725. http://doi.org/10.1016/j.celrep.2019.02.015.
Li Y, et al. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 2018;9:1994. http://doi.org/10.3389/fimmu.2018.01994.
Liangpunsakul S, Toh E, Ross RA, et al. Quantity of alcohol drinking positively correlates with serum levels of endotoxin and markers of monocyte activation. Sci Rep. 2017;7:4462. http://doi.org/10.1038/s41598-017-04669-7].
Lin YH, et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes. 2019:2407-21.
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145-51. http://doi.org/10.1016/j.cyto.2008.01.006.
Luck H, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21:527-42. http://doi.org/10.1016/j.cmet.2015.03.001.
Luck H, et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10:3650. http://doi.org/10.1038/s41467-019-11370-y.
Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662-5. http://doi.org/10.1126/science.1091334.
Malnick SD. H., Fisher D, Somin M, Neuman MG. Treating the metabolic syndrome by fecal transplantation-current status. Biology (Basel). 2021 May;10(5):447. http://doi.org/10.3390/biology10050447.
Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat.Immunol. 2011;12:5-9. http://doi.org/10.1038/ni0111-5.
Matey-Hernandez ML, Williams FM. K., Potter T, Valdes A, Spector TD, Menni C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genom. 2018;50:117-26. http://doi.org/10.1152/physiolgenomics.00053.2017.
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231-41. http://doi.org/10.1038/nature11551.
Miller MA, McTernan PG, Harte AL, et al. Ethnic and sex differences in circulating endotoxin levels: A novel marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. Atherosclerosis. 2009;203:494-502. http://doi.org/10.1016/j.atherosclerosis.2008.06.018.
Minihane AM, Vinoy S, Russell WR, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114:999-1012. http://doi.org/10.1017/S0007114515002093.
Miyamoto S, et al. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin. Diabetes. 2012;61:897-907. http://doi.org/10.2337/db11-0402.
Mkumbuzi L, Mfengu MM, Engwa GA, Sewani-Rusike CR. Insulin resistance is associated with gut permeability without the direct influence of obesity in young adults. Diabetes Metab Syndr Obes. Targets Ther. 2020;13:2997-3008. http://doi.org/10.2147/DMSO.S256864.
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240-73. http://doi.org/10.1128/CMR.00046-08.
Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol. 2020;11:594150. http://doi.org/10.3389/fimmu.2020.594150.
Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients. 2018;10 (10):1502. http://doi.org/10.3390/nu10101502.
Moreno-Navarrete JM, Sabater-Masdeu M, Ortega FJ, Ricart W, Fernández-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE. 2012;7:e37160. http://doi.org/10.1371/journal.pone.0037160.
Mortha A, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288. http://doi.org/10.1126/science.1249288.
Morton AM, et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad. Sci. USA. 2014;111:6696-701. http://doi.org/10.1073/pnas.1405634111.
Mujagic Z, de Vos P, Boekschoten MV, et al. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Sci Rep. 2017;7:40128. http://doi.org/10.1038/srep40128.
Mumy KL, Chen X, Kelly CP, McCormick BA. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am J Physiol Gastrointest Liver Physiol. 2008;294:G599–G609. http://doi.org/10.1152/ajpgi.00391.2007.
Murata M. Inflammation and cancer. Environ Health Prev Med. 2018;23(1):50. http://doi.org/10.1186/s12199-018-0740-1.
Natividad JM, et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28:737-49.e734. http://doi.org/10.1016/j.cmet.2018.07.001.
Nita-Lazar M, Rebustini.I, Walker J, Kukuruzinska MA. Hypoglycosylated E-cadherin promotes the assembly of tight junctions through the recruitment of PP2A to adherens junctions. Exp Cell Res. 2010;316 (11):1871-84. http://doi.org/10.1016/j.yexcr.2010.02.008.
Obata Y, Castaño Á, Boeing S, et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020;578:284-9. http://doi.org/10.1038/s41586-020-1975-8.
O’Connor CJ., Wallace RG, Iwamoto K, Taguchi T, Sunamoto J. Bile salt damage of egg phosphatidylcholine liposomes. Biochim Biophys Acta. 1985;817:95-102. http://doi.org/10.1016/0005-2736 (85)90072-0.
Odenwald MA, Turner JR. The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017;14:9-21. http://doi.org/10.1038/nrgastro.2016.169.
Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci. Rep. 2017;7:11955. http://doi.org/10.1038/s41598-017-12109-9.
Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143:1679-86. http://doi.org/10.3945/jn.113.180794.
Ouellette AJ, Greco RM, James M, Frederick D, Naftilan J, Fallon JT. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989;108:1687-95. 10.1083/jcb.108.5.1687.
Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. 2000;32:742-7. http://doi.org/10.1016/S0168-8278 (00)80242-1.
Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100-1.e2. http://doi.org/10.1053/j.gastro.2012.01.034.
Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 2003;112(4):535-48. http://doi.org/10.1016/s0092-8674 (03)00108-9.
Petersen C, Bell R, Klag KA, et al. T cell-mediated regulation of the microbiota protects against obesity. Science. 2019;365:eaat9351. http://doi.org/10.1126/science.aat9351.
Portincasa P, Bonfrate L, Khalil M, et al. Intestinal barrier and permeability in health, obesity and NAFLD Biomedicines. 2022;10(1):83. http://doi.org/10.3390/biomedicines10010083.
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55-60. http://doi.org/10.1038/nature11450.
Raimondi F, Santoro P, Barone MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G906–G913. http://doi.org/10.1152/ajpgi.00043.2007.
Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci. 2013;9:99-107. http://doi.org/10.2174/1573401311309020004.
Sasaki T, et al. Innate lymphoid cells in the induction of obesity. Cell Rep. 2019;28:202-17.e207. http://doi.org/10.1016/j.celrep.2019.06.016.
Schneider MR, Dahlhoff M, Horst D, et al. A key role for E-cadherin in intestinal homeostasis and Paneth cell maturation. PLoS One. 2010;5 (12):e14325. http://doi.org/10.1371/journal.pone.0014325.
Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324-32. http://doi.org/10.1038/nm1663.
Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119 (10):2095-106. http://doi.org/10.1242/jcs.02915.
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulinresistance. J Clin Invest. 2006;116 (11):3015-25. http://doi.org/10.1172/JCI28898.
Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569-73. http://doi.org/10.1126/science.1241165.
Smyth D, Phan V, Wang A, McKay DM. Interferon-γ-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Investig. 2011;91:764-77. http://doi.org/10.1038/labinvest.2010.208.
Song X, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2019;577:410-5. http://doi.org/10.1038/s41586-019-1865-0.
Stärkel P, Leclercq S, de Timary P, Schnabl B. Intestinal dysbiosis and permeability: The yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci. 2018;132:199-212. http://doi.org/10.1042/CS20171055.
Steidler L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352-5. http://doi.org/10.1126/science.289.5483.1352.
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24:539-77. http://doi.org/10.1146/annurev.nutr.24.012003.132418.
Sun L, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018;24:1919-29. http://doi.org/10.1038/s41591-018-0222-4.
Taleb S. Tryptophan dietary impacts gut barrier and metabolic diseases. Front Immunol. 2019;10:211. http://doi.org/10.3389/fimmu.2019.02113.
Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised paneth cell antimicrobial host defense. Hepatology. 2012;55:1154-63. http://doi.org/10.1002/hep.24789.
Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359:1376-83. http://doi.org/10.1126/science.aar3318.
Thuy S, Ladurner R, Volynets V, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138:1452-5. http://doi.org/10.1093/jn/138.8.1452.
Toubal A, et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 2020;11:3755. http://doi.org/10.1038/s41467-020-17307-0.
Tremaroli V, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228-38. http://doi.org/10.1016/j.cmet.2015.07.009.
Tsai S, Winer S, Winer DA, Gut T. Cells feast on GLP-1 to modulate cardiometabolic disease. Cell Metab. 2019;29:787-9. http://doi.org/10.1016/j.cmet.2019.03.002.
Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-31. http://doi.org/10.1038/nature05414.
Ulluwishewa D. Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769-76. 10.3945/jn.110.135657.
Vaidyanathan B, et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J. Exp. Med. 2017;214:197-208. http://doi.org/10.1084/jem.20160789.
van Ampting MT.J, Schonewille AJ, Vink C, Brummer RJ. M., van der Meer R, Bovee-Oudenhoven IM. J. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats. BMC Physiol. 2009;9:6. http://doi.org/10.1186/1472-6793-9-6.
Vancamelbeke M, Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017;11:821-34. http://doi.org/10.1080/17474124.2017.1343143.
Vaquero Alvarez M, Aparicio-Martinez P, Fonseca Pozo FJ, Valle Alonso J, Blancas Sanchez IM, Romero-Saldana M. A sustainable approach to the metabolic syndrome in children and its economic burden. Int. J. Environ. Res. Public Health. 2020;17:1891. http://doi.org/10.3390/ijerph17061891.
Varelias A, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Investig. 2018;128:1919-36. http://doi.org/10.1172/JCI91646.
Vargas-Robles H, Castro-Ochoa KF, Citalán-Madrid AF, Schnoor M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J Gastroenterol. 2019;25:4181-98. http://doi.org/10.3748/wjg.v25.i30.4181.
Venkatesh M, Mukherjee S, Wang H, Li H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296-310. http://doi.org/10.1016/j.immuni.2014.06.014.
Vera-Barajas A, Abenavoli L, Scarpellini E, et al. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. Hepatoma Res. 2020;6:5. http://doi.org/10.20517/2394-5079.2019.29.
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41-50. http://doi.org/10.1016/j.cmet.2016.05.005.
Wang B, Wu G, Zhou Z, et al. Glutamine and intestinal barrier function. Amino Acids. 2015;47:2143-54. http://doi.org/10.1007/s00726-014-1773-4.
Wang K, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019;26:222-35.e225. http://doi.org/10.1016/j.celrep.2018.12.028.
Wang Y, Tong J, Chang B, Wang B, Zhang D, Wang B. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Molecular medicine reports. 2014;9(6):2352-6.
Wehkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Curr Opin Gastroenterol. 2007;23:32-8. http://doi.org/10.1097/MOG.0b013e32801182c2.
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci.2017;74:2959-77. http://doi.org/10.1007/s00018-017-2509-x.
Winer DA, Winer S, Dranse HJ, Lam TK. Immunologic impact of the intestine in metabolic disease. J Clin Investig. 2017;127:33-42. http://doi.org/10.1172/JCI88879.
Woodhouse CA, Patel VC, Singanayagam A, Shawcross DL. Review article: The gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment. Pharmacol. Ther. 2018;47:192-202. http://doi.org/10.1111/apt.14397.
Wu W, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10:946-56. http://doi.org/10.1038/mi.2016.114.
Wu X, Vallance BA, Boyer L, et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol. 2008;294:G295–G306. http://doi.org/10.1152/ajpgi.00173.2007.
Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the akt signaling pathway. PloS One. 2017;12:e0179586.10.1371.
Yang Y, Lv J, Jiang S, Ma S, Wang D, Hu W. The emerging role of toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:1-10. http://doi.org/10.1038/cddis.2016.140.
Yang Y, Zhang Y, Xu Y, et al. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food Funct. 2019;10:5952-68. http://doi.org/10.1039/C9FO00766K.
Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-α modulation of intestinal epithelial tight junction barrier. Am J Physiol — Gastrointest Liver Physiol. 2006;290:496-504. http://doi.org/10.1152/ajpgi.00318.2005.
Yu C, Jia G, Deng Q, Zhao H, Chen X, Liu G, Wang K. The effects of glucagon-like peptide-2 on the tight junction and barrier function in IPEC-J2 cells through phosphatidylinositol 3-kinase–protein kinase B–mammalian target of rapamycin signaling pathway. Asian-Australas. J. Anim. Sci. 2016;29:731-38. http://doi.org/10.5713/ajas.15.0415.
Yudanin NA, et al. Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity. 2019;50:505-19.e504. http://doi.org/10.1016/j.immuni.2019.01.012.
Yusta B, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64:2537-49. http://doi.org/10.2337/db14-1577.
Zhang B, Yue R, Chen Y, Huang X, Yang M, Shui J, Peng Y. The herbal medicine scutellaria-coptis alleviates intestinal mucosal barrier damage in diabetic rats by inhibiting inflammation and modulating the gut microbiota. Evid. Based. Complement. Altern. Med. 2020;2020:4568629. http://doi.org/10.1155/2020/4568629.
Zhang DM, Jiao RQ, Kong LD. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients. 2017;9:335. http://doi.org/10.3390/nu9040335.
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151-6. http://doi.org/10.1126/science.aao5774.
Zhao R, Long X, Yang J, Du L, Zhang X, Li J, Hou C. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct. 2019;10:8273-85. http://doi.org/10.1039/C9FO02077B.
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492-506. http://doi.org/10.1038/s41422-020-0332-7
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Автори
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.