DOI: https://doi.org/10.30978/UTJ2019-4-69

Мікробіом кишечнику і цукровий діабет 2 типу

O.Yе. Gridnyev, K.Yu. Dubrov

Анотація


У статті викладені сучасні уявлення про роль мікробіома кишечнику в патогенетичних механізмах розвитку інсулінорезистентності та цукрового діабету (ЦД) 2 типу. Наведено дані про вплив особливостей харчування і медикаментів на формування кишкового мікробіома, у тому числі різних харчових добавок. Так само показана роль коротколанцюгових жирних кислот згідно з даними досліджень на тваринних моделях і на пацієнтах з ЦД 2 типу в розвитку інсулінорезистентності та порушень метаболізму глюкози. Окремо висвітлені питання участі жовчних кислот у розвитку інсулінорезистентності та ЦД 2 типу. Наведено дані різних досліджень із зазначенням які саме зміни відбуваються в складі мікробіома кишечнику при інсулінорезистентності, предіабеті, ЦД 2 типу на експериментальних тваринних моделях і у людей з даними захворюваннями. Описана роль ендотоксину кишкового мікробіома в розвитку інсулінорезистентності та ЦД 2 типу та результати його застосування на тваринних моделях. Наведено дані про механізми впливу бактеріального ендотоксину, у тому числі через Toll-подібні рецептори, гени мієлоїдного диференціювання і ядерний фактор «каппа-бі» на розвиток запальних процесів. Окремо висвітлені питання змін мікробіома кишечнику при лікуванні метформіном хворих на ЦД 2 типу та їх роль у потенціюванні гіпоглікемічної дії метформіну. Описані зміни кількості бактерій Akkermansia muciniphila у пацієнтів з ЦД 2 типу, що приймають метформін та наведені результати застосування даного виду бактерій на мишах. Наведено можливі шляхи впливу на мікробіом кишечнику з метою нормалізації його стану та окреслено перспективи нових методів.

Ключові слова


цукровий діабет 2 типу; мікробіом кишечнику; метформін; інсулінорезистентність

Повний текст:

PDF (Русский)

Посилання


Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. International Journal of Obesity. 2011;35: 522–529. doi:10.1038/ijo.2011.27.

Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15:539e53.

Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3:559e72.

Andersson U, Bränning C, Ahrne S, Molin G, Alenfall J, Onning G, et al. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes. 2010;1(2):189-96. doi: 10.3920/BM2009.0036.

Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010;104: 1831e8.

Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatrics. 2014;168:1063–1069. doi:10.1001/jamapediatrics. 2014.1539.

Bailey CJ, Wilcock C, Scarpello JHB. Metformin and the intestine. Diabetologia. 2008;51(8):1552–3. doi: 10.1007/s00125-008-1053-5.

Battarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, et al. Human derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2017;313(1):G80-G87. doi: 10.1152/ ajpgi.00448.2016.

Bonora E, Cigolini M, Bosello O, Zancanaro C, Capretti L, Zavaroni I, et al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Current Medical Research and Opinion. 1984;9(1):47–51.doi: 10.1185/03007998409109558.

Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42. doi: 10.1186/s13073-016-0303-2.

Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172:639e48. doi: 10.1530/EJE-14-1163.

Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obesity Reviews. 2013;14:950–959. doi:10.1111/obr.12068.

Brown AJ, Jupe S, Briscoe CP. A Family of Fatty Acid Binding Receptors. DNA and Cell Biology. 2005;24(1):54–61.

Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 2015;66:343-59. doi: 10.1146/annurev-med-060513-093205.

Buse JB, Defronzo RA, Rosenstock J, Kim T, Burns C, Skare S, et al. The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation. Results From Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care. 2016;39(2):198-205. doi:10.2337/dc15-0488.

Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravatesWAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658-68. doi: 10.1016/j.cmet.2015.07.026.

Calcinaro F, Dionisi S, Marinaro M, Candeloro P, Bonato V, Marzotti S, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48:1565e75. doi: 10.1007/s00125-005-1831-2.

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi:10.2337/db06-149.

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi:10.1136/gut.2008.165886.

Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biology. 2011;9(12):e1001212. doi: 10.1371/journal.pbio.1001212.

Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P, Vassallo J, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823e34. doi:10.1007/s00125-012-2648-4.

Chang EB, Rao MC. A new role for microbiome? Dulling the thrust of serotonin and 5HT3 signaling cascade. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2017;313(1):G14-G15. doi: 10.1152/ajpgi.00166.2017.

Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2016;536(7615):238. doi: 10.1038/nature18000.

Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science. 2001;294(5548):1866–70.

Chen J, Wang R, Li XF, Wang RL. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br. J. Nutr. 2012;107(10):1429–1434. doi: 10.1017/S0007114511004491.

Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7(2):e02210-15. doi: 10.1128/mBio.02210-15.

Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–626. doi:10.1038/ nature11400.

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi:10.1038/nature11319.

Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi:10.1016/j.cell.2014.05.052.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559–563. doi:10.1038/nature12820.

De FC, Cavalieri D, Di PM, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS. 2010;107: 14691–14696. doi:10.1073/pnas.0914454107.

De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62. doi: 10.2337/dc16-1324.

De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiome-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84-96. doi: 10.1016/j.cell.2013.12.016.

Devaraj S, Hemarajata P, Versalovic J. La microbiome intestinal humana y el metabolismo corporal: Implicaciones con la obesidad y la diabetes. Acta Bioquímica Clínica Latinoamericana. 2013;47(2):421-434.

Diagnosis and Classification of Diabetes Mellitus American Diabetes Association. Diabetes Care Jan. 2009;32(Supplement 1):S62-S67. doi: 10.2337/dc09-S062.

Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS. 2010;107:11971–11975. doi:10.1073/pnas. 1002601107.

Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology. 2007;73(4):1073-1078. doi: 10.1128/AEM.02340-06.

Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. The British Journal of Nutrition. 2004;91(6):915.

Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. American Journal of Clinical Nutrition. 2007;86:1286–1292.

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110:9066-71. doi:10.1073/ pnas.1219451110.

Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes. 2011;60(11):2775–86. doi: 10.2337/db11-0227.

Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015 Feb;74(1):13-22. doi: 10.1017/S0029665114001463.

Forslund K, Hildebrand F, Nielsen T, Falony G, Chatelier EL, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6. doi: 10.1038/nature15766.

Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The shortchain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications. 2014; 5:3611. doi: 10.1038/ncomms4611.

Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17. doi: 10.2337/db08-1637.

Gershon MD. Serotonin is a sword and a shield of the bowel: Serotonin plays offense and defense. Trans Am Clin Climatol Assoc. 2012;123:268-280.

Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol. 2006;6(1):44–55.

Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease. 2015;26:26164. doi: 10.3402/mehd.v26.26164.

Harte AL, Varma MC, Tripathi G, McGee KC, Al-Daghri NM, Al-Attas OS, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35:375–382. doi:10.2337/ dc11-1593.

He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res. 2015;35(5): 361–367. doi: 10.1016/j.nutres.2015.03.002.

Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. Inflammasomes and metabolic disease. Annu Rev Physiol. 2014;76:57e78. doi: 10.1146/annurev-physiol-021113-170324.

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–1724. doi:10.1053/j.gastro.2009.08.042.

Hollister E, Gao C, Versalovic J. Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology. 2014;146(6):1449–1458. doi: 10.1053/j.gastro.2014.01.052.

IDF DIABETES ATLAS. Eighth edition. 2017. URL: http://fmdiabetes.org/wp-content/uploads/2018/03/IDF-2017.pdf/.

Kadooka Y, SatoM, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010;64(6):636–43. doi: 10.1038/ejcn.2010.19.

Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. doi: 10.1038/ncomms2266.

Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi: 10.1038/nature12198.

Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circulation Research. 2016;119 (8):956-64. doi: 10.1161/CIRCRESAHA.116.309219.

Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K,Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852.

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. PNAS. 2011;108 (Suppl 1):4578–4585. doi:10.1073/pnas.1000081107.

Konner AC, Bruning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab TEM. 2011;22(1):16e23. doi: 10.1016/j.tem.2010.08.007.

Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. Journal of Bacteriology. 2006;188(5):1979- 1986. doi: 10.1128/JB.188.5.1979-1986.2006.

Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, Luo L, et al. Composition Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. Journal of Diabetes and Obesity. 2015;2(2):108–14. doi: 10.15436/2376-0949.15.031.

Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2): e9085.

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500(7464):541-6. doi: 10.1038/nature12506.

Lehmann A, Hornby PJ. Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol. 2016;310(11):G887-98. doi: 10.1152/ajpgi.00068.2016.

Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi:10.1038/4441022a.

Li X, Wang E, Yin B, Fang D, Chen P, Wang G, et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017;8(3):421-432. doi: 10.3920/BM2016.0167.

Li Y, Han L, Xu M, Guo J, Feng M, Wang X. The Primary Research on the Gut Microbes in KKAy Mice. Indian J Microbiol. 2014;54(1):12–19. doi:10.1007/s12088-013-0410-3.

Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews. Microbiology. 2014;12:661-672. doi: 10.1038/nrmicro3344.

Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. doi:10.1038/nature08530.

Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22:2416e26.

Mikkelsen KH, Knop FK, Frost M, Hallas J, Pottegård A. Use of antibiotics and risk of type 2 diabetes: a population-based case-control study. J Clin Endocrinol Metab. 2015;100(10):3633e40. doi: 10.1210/jc.2015-2696.

Murphy EF, Cotter PD, Healy S, Marques TM, Osullivan O, Fouhy F, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59(12):1635–42. doi: 10.1136/gut.2010.215665.

Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ, Mitchell EA. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. International Journal of Obesity. 2014;38:1115–1119. doi:10.1038/ijo.2013.218.

Napolitano A, Miller S, Nicholls AW, Baker D, Van Horn S, Thomas E, et al. Novel Gut-Based Pharmacology of Metformin in Patients with Type 2 Diabetes Mellitus. PLoS ONE. 2014;9(7): e100778. doi: 10.1371/journal.pone.0100778.

Palmnas MSA, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PloS One. 2014;9(10): e109841. doi: 10.1371/journal.pone.0109841.

Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biology. 2007;5:e177. doi:10.1371/journal.pbio.0050177.

Paras TM, Percival F, McQuade E. The gut microbiome influences arthritis development in IIJ mice. The Journal of Immunology. 2016;196(supll.1):118.6.

Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol. 2012;7: 99-122. doi: 10.1146/annurev-pathol-011811-132421.

Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13. doi: 10.1038/nm.4236.

Powell DR, Smith M, Greer J, Harris A, Zhao S, DaCosta C, et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)–mediated absorption of intestinal glucose. J Pharmacol Exp Ther. 2013;345(2):250-9. doi: 10.1124/jpet.113.203364.

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2diabetes. Nature. 2012;490(7418):55-60. doi: 10.1038/nature11450.

Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiome and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes. 2014;5(1):33-43. doi: 10.3920/BM2013.006.

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214. doi: 10.1126/science.1241214.

Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiome protects laboratory mice against lethal influenza virus infection and colorectal cancer. J Immunol. 2017;198 (1 Supplement): 68.5.

Ruan Y, Sun J, He J, Chen F, Chen R, Chen H. Effect of probiotics on glycemic control: a systematic review and metaanalysis of randomized, controlled trials. PloS One 2015;10(7):e0132121. doi: 10.1371/journal.pone.0132121.

Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009;10:419e29.

Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225e35. doi: 10.1016/j.cmet.2013.01.003.

Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacological Research. 2013;69(1):52-60. doi: 10.1016/j.phrs.2012.10.020.

Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. Journal of Bacteriology. 2006;188(12):4340-4349. doi: 10.1128/JB.00137-06.

Semenkovich CF, Danska J, Darsow T, Dunne JL, Huttenhower C, Insel RA, et al. American Diabetes Association and JDRF Research Symposium: Diabetes and the Microbiome. Diabetes. 2015; 64(12): 3967–3977. doi: 10.2337/db15-0597.

Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727e35. doi:10.1136/gutjnl-2012-303839.

Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews. Microbiology. 2011;9(4):279–290. doi:10.1038/nrmicro2540.

Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Bioresources. 2012;1(4):192-198. doi: 10.1089/biores.2012.0223.

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181e6. doi:10.1038/nature13793.

The Human Microbiome Project Consortium. Structure, function and diversity of thehealthy human microbiome. Nature. 2012;486(7402): 207-214. doi: 10.1038/nature11234.

Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism. 2009;10:167–177. doi:10.1016/j.cmet.2009.08.001.

Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS ONE. 2010;5:e9074. doi:10.1371/journal.pone. 0009074.

Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezem M, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME Journal. 2013;7:707–717. doi:10.1038/ismej.2012.146.

Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes. 2012;61:364–371. doi: 10.2337/db11-1019.

Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. International Journal of Obesity. 2013;37:16–23. doi:10.1038/ijo.2012.132.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi:10.1038/nature07540.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gutmicrobiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi:10.1038/nature05414.

Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Trans Med. 2009;1(6):6ra14. doi:10.1126/scitranslmed.3000322.

Uranga-Ocio JA. Enteric neuropathy associated to diabetes mellitus. Revista Española de Enfermedades Digestivas. 2015;107(6):366-373.

Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V. Type 2 diabetes: Demystifying the global epidemic. Diabetes. 2017;66(6):1432-1442. doi: 10.2337/db16-0766.

Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-31. doi: 10.1126/science.1179721.

Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology. 2014;60:824–831. doi:10.1016/j.jhep.2013.11.034.

Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913e6. doi: 10.1053/j.gastro.2012.06.031.

Wang F, Zhang C, Zeng Q. Gut microbiota and immunopathogenesis of diabetes mellitus type 1 and 2. Front Biosci. 2016;21(5):900–906. doi: 10.2741/4427.

Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.

Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. doi: 10.1038/nm.4345.

Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, et al. Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology. 2010;61(1):69–78. doi: 10.1007/s00284-010-9582-9.

Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87(2): 357–367. doi: 10.1111/1574-6941.12228.

Xu P, Hong F, Wang J, Wang J, Zhao X, Wang S, et al. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis. Biochim Biophys Acta Gen Subj. 2017;1861(11 Pt A):2690-2701. doi: 10.1016/j.bbagen.2017.07.013.

Yang M, Fukui H, Eda H, Xu X, Kitayama Y, Hara K, et al. Involvement of gut microbiota in association between GLP-1/GLP-1 receptor expression and gastrointestinal motility. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2017;312(4): G367–G373. 10.1152/ajpgi.00232.2016.

Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J, et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS One. 2017;12(10):e0184735. doi: 10.1371/journal.pone.0184735.

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8(8):e71108. doi: 10.1371/journal.pone.0071108.

Zhou J, Hegsted M, McCutcheon KL, Keenan MJ, Xi X, Raggio AM, Martin RJ. Peptide YY and proglucagon mRNA expression patterns and regulation in the ut. Obesity. 2006;14(4):683-689. doi: 10.1038/oby.2006.77.




© Український терапевтичний журнал, 2020
© ПП «ІНПОЛ ЛТМ», 2020