Антиоксидантна активність у пацієнтів із хронічним обструктивним захворюванням легень та ішемічною хворобою серця

Автор(и)

  • O. O.  Krakhmalova ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Ukraine
  • L. M.  Samokhina ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Ukraine
  • Yu.  E.  Kharchenko ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків, Ukraine

DOI:

https://doi.org/10.30978/UTJ2018-3-4-62

Ключові слова:

система оксиданти/антиоксиданти, загальна антиоксидантна активність, сигаретний дим, хронічне обструктивне захворювання легень, ішемічна хвороба серця, препарати антиоксидантної дії

Анотація

Вивчено нові дані про роль антиоксидантної системи в механізмах патогенезу хронічного обструктивного захворювання легень (ХОЗЛ) і в поєднанні з ішемічною хворобою серця (ІХС). Визначено ефективний мікрометод оцінки загальної антиоксидантної активності в плазмі крові людини. Зауважено неоднозначний характер змін системи оксиданти/антиоксиданти при ХОЗЛ, а також на тлі впливу сигаретного диму. Показано, що при загостренні кардіореспіраторної патології реакції вільнорадикального окислення посилюються, але з віком спостерігається неспецифічність змін. Наведено дані про ефективність різних препаратів антиоксидантної дії в лікуванні ХОЗЛ і в поєднанні з ІХС. Окреслено перспективи розвитку досліджень в індивідуальному підборі лікарських засобів.

Біографії авторів

O. O.  Krakhmalova, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

О. О. Крахмалова

L. M.  Samokhina, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

Л. М. Самохіна

Yu.  E.  Kharchenko, ДУ «Національний інститут терапії імені Л. Т. Малої НАМН України», Харків

Ю. Є. Харченко

Посилання

Alekseev AV, Proskurnina EV, Vladimirov Yu A. Determination of antioxidants by the activated chemiluminescence method using 2,2’­azo ­ bis (2 ­ amidinopropane) (Rus). Vestn. Moscow. un­ta. (Rus). Ser. 2, Chemistry. 2012;53(3):187­-193.

Akhmineeva AKh. Biochemical markers of endothelial dysfunction in chronic obstructive pulmonary disease in combination with hypertensive disease, ischemic heart disease (Rus). [Therapeutic archive]. (Rus). 2014;3:20­-23.

Bova AA, Lapitsky DV. Chronic obstructive pulmonary disease in combination with ischemic heart disease. Modern approaches to diagnosis and treatment: guidelines. (Rus). Minsk: Asobnu;2007:56.

Herych PR, Yatsyshyn RI. Effectiveness of using the combination of roflumilast and quercetin for correction of oxygen — dependent mechanisms and phagocytic activity of cells of the macrophage system in patients with exacerbation of chronic obstructive pulmonary diseases in combination with ischemic heart disease (Ukr). Vrachebnoe delo. (Rus). 2015;1­2:67­-76.

Herych PR, Yatsyshyn RI. Treatment and prophylaxis of combined cardiorspiratory pathology in the exacerbation of chronic obstructive pulmonary disease (Ukr). Vrachebnoe delo. (Rus). 2014;7­8:38­-46.

Grigoryeva NYu, Kuznetsov AN, Koroleva TV, Koroleva ME. Combined drug ascoril in the treatment of patients with chronic obstructive pulmonary disease with concomitant ischemic heart disease (Rus). [Therapeutic archive]. (Rus). 2013;85(8):91­-94.

Kakhmalova O, Samokhina LM, Kalashnik DM, Bondar TM. Violation of the functional state of the endothelium in chronic obstructive pulmonary disease and coronary heart disease (Ukr). General Therapeutic Practice: New Technologies and Interdisciplinary Issues: Materials of a Scientific and Practical Conference with International Participation November 7, 2013, edited by GD Fadieenko and others. (Ukr). Kh. 2013:180.

Kakhmalova O, Samokhina LM, Kalashnik DM, Bondar TM. Stable metabolites of nitric oxide in smokers of the elderly with chronic obstructive pulmonary disease and ischemic heart disease (Ukr). Materials of the scientific and practical conference with international participation «Annual Therapeutic Readings: Therapeutic and Diagnostic Technologies of Modern Therapy» (Ukr). April 25­26, 2013. Kharkiv, 2013:164.

Kakhmalova O, Samokhina LM, Kalashnik DM. Stable metabolites of nitric oxide in chronic obstructive pulmonary disease and coronary heart disease (Ukr). International scientific and practical conference «Ensuring the health of the nation and personality health as a priority function of the state» (Ukr). Odessa, April 5­6. 2013:88­-92.

Poplavskaya EE, Lis MA. The state of endothelial function and phagocytosis activity in chronic obstructive pulmonary disease and coronary heart disease (Rus). [Journal of the Grodno State Medical University]. (Rus). 2010;29(1):29­-31.

Aliyali M, Mehravaran H, Abedi S, et al. Impact of Comorbid Ischemic Heart Disease on Short ­ Term Outcomes of Patients Hospitalized for Acute Exacerbations of COPD. Tanaffos. 2015;14(3):165­-171.

Ben Anes A, Ben Nasr H, Garrouch A, Bennour S, Bchir S, Hachana M, Benzarti M, Tabka Z, Chahed K. Alterations in acetylcholinesterase and butyrylcholinesterase activities in chronic obstructive pulmonary disease: relationships with oxidative and inflammatory markers. Mol Cell Biochem. 2017. doi:10.1007 / s11010­017­3246­z.

ben Anes A, Fetoui H, Bchir S. et al. Increased oxidative stress and altered levels of nitric oxide and peroxynitrite in Tunisian patients with chronic obstructive pulmonary disease: correlation with disease severity and airflow obstruction. Biol Trace Elem Res. 2014;161(1):20-­31. doi:10.1007 / s12011­014­0087­4.

Cao T, Xu N, Wang Z, Liu H. Effects of Glutathione S­Transferase Gene Polymorphisms and Antioxidant Capacity per Unit Albumin on the Pathogenesis of Chronic Obstructive Pulmonary Disease. Oxid Med Cell Longev. 2017;2017:6232397. doi:10.1155/2017/6232397.

Cazzola M, Calzetta L, Facciolo F, et al. Pharmacological investigation on the anti­oxidant and anti­inflammatory activity of N­acetylcysteine in an ex vivo model of COPD exacerbation. Respir Res. 2017;18(1):26. doi:10.1186/s12931­016­0500y.

Dove RE, Leong­-Smith P, Roos-­Engstrand E, et al. Cigarette smoke ­ induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD. Eur Clin Respir J. 2015;2:10.3402/ecrj.v2.27837. doi:10.3402/ecrj.v2.27837.

Dursunoglu N, Dursunoglu D, Yıldız AІ et al. Severity of coronary atherosclerosis in patients with COPD. Clin Respir J. 2017;11(6):751­-756. doi:10.1111/crj.12412.

Fermoselle C, Rabinovich R, Ausin P, et al. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur Respir J 2012;40:851­-862.

Genç A, Üçok K, Şener Ü, et al. Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. Turk J Med Sci. 2014;44 (6):972­9.

Kambayashi Y, Binh NT, Asakura HW, et al. Efficient Assay for Total Antioxidant Capacity in Human Plasma Using a 96 — Well Microplate. J Clin Biochem Nutr. 2009;44(1):46­-51.

Kan H, Stevens J, Heiss G, Rose KM, London SJ. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. Am J Epidemiol. 2008;167(5):570­-578.

Li C, Yan L, Xu J. Correlations between lipid ratio/oxidative stress status in COPD patients and pulmonary hypertension as well as prognosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016;41(11):1168­-1174.

Li F, Wiegman C, Seiffert JM, et al. Effects of N­acetylcysteine in ozone ­ induced chronic obstructive pulmonary disease model. PLoS One. 2013;8(11):e80782. doi:10.1371/journal.pone.0080782.

Mancini A, Corbo GM, Gaballo A, et al. Relationship between plasma antioxidants and thyroid hormones in chronic obstructive pulmonary disease. Exp Clin Endocrinol Diabetes. 2012;120(10):623­-628. doi:10.1055/s­0032­1323808.

McCurdy MR, Sharafkhaneh A, Abdel­Monem H, et al. Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease. J Breath Res. 2011;5(1):016003. doi:10.1088/1752­7155/5/1/016003.

Mihalache A, Fitting JW, Nicod LP. Chronic obstructive pulmonary disease and its links with cardiovascular risk factors. Rev Med Suisse. 2015 18;11(495):2154-2156.

Mitani A, Azam A, Vuppusetty C, et al. Quercetin restores corticosteroid sensitivity in cells from patients with chronic obstructive pulmonary disease. Exp Lung Res. 2017;43(9­10):417­425. doi:10.1080/01902148.2017.1393707.

Moussa SB, Sfaxi I, Tabka Z, et al. Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: a case­control study. Libyan Journal of Medicine. 2014;9(1):23873. doi:10.3402/ljm.v9.23873.

Nadeem A, Raj HG, Chhabra SK. Effect of vitamin E supplementation with standard treatment on oxidant­antioxidant status in chronic obstructive pulmonary disease. Indian J Med Res. 2008;128(6):705­-711.

Nyunoya T, March TH, Tesfaigzi Y, Seagrave J. Antioxidant diet protects against emphysema, but increases mortality in cigarette smoke ­ exposed mice. COPD. 2011;8(5):362­-368. doi:10.3109/15412555.2011.600361.

Paul T, Salazar­Degracia A, Peinado VI, et al. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental Chronic Obstructive Pulmonary Disease. PLoS One. 2018;13(1):e0190628. doi:10.1371/journal.pone.0190628. eCollection 2018.

Pérez­-Rial S, Del Puerto-­Nevado L, Girón­-Martínez A, et al. Liver growth factor treatment reverses emphysema previously established in a cigarette smoke exposure mouse model. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L718­-26. doi:10.1152/ajplung.00293.2013.

Pirabbasi E, Najafiyan M, Cheraghi M, et al. What are the antioxidant status predictors’ factors among male chronic obstructive pulmonary disease (COPD) patients?. Glob J Health Sci. 2012;5(1):70­-78. doi:10.5539/gjhs.v5n1p70.

Prieto L, Palop J, Llusar R, et al. Effects of cigarette smoke on methacholine ­ and AMP­induced air trapping in asthmatics. J Asthma. 2015;52(1):26­-33. doi:10.3109/02770903.2014.944981.

Rodríguez­-Rodríguez E, Ortega RM, Andrés P, et al. Antioxidant status in a group of institutionalised elderly people with chronic obstructive pulmonary disease. Br J Nutr. 2016;115(10):1740­-1747. doi:10.1017/S 0007114516000878.

Tavilani H, Nadi E, Karimi J, Goodarzi MT Oxidative stress in COPD patients, smokers, and non — smokers. Respir Care. 2012;57(12):2090-209­4. doi:10.4187/respcare.01809.

Thomson NC. Targeting oxidant — dependent mechanisms for the treatment of respiratory diseases and their comorbiditie. Curr Opin Pharmacol. 2017;40:1­-8. doi:10.1016/j.coph.2017.11.013.

Troost FJ, Saris WH, Haenen GR, Bast A, Brummer RJ. New method to study oxidative damage and antioxidants in the human small bowel: Effects of iron application. Am J Physiol Gastrointest Liver Physiol. 2003;285:G354­-359.

Vanella L, Li Volti G, Distefano A, et al. A new antioxidant formulation reduces the apoptotic and damaging effect of cigarette smoke extract on human bronchial epithelial cells. Eur Rev Med Pharmacol Sci. 2017;21(23):5478­-5484. doi:10.26355/eurrev_201712_13938.

Wei J, Zhao H, Fan G, Li J. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke — induced emphysema. Biochem Biophys Res Commun. 2015;465(2):180­-187. doi:10.1016/j.bbrc.2015.07.133.

Zhang JQ, Zhang JQ, Fang LZ, et al. Effect of oral N­acetylcysteine on COPD patients with microsatellite polymorphism in the heme oxygenase — 1 gene promoter. Drug Des Devel Ther. 2015;9:6379­-6387. doi:10.2147/DDDT.S91823.

Zhao QJ, Liu XJ, Zeng XL, Bao HR. Effect of PM2.5 on the level of nuclear factor erythroid — 2 related factor 2 in chronic obstructive pulmonary disease mice and its relationship with oxidative stress. Zhonghua Yi Xue Za Zhi. 2016;96(28):2241­-2245. doi:10.3760/cma.j.issn.0376­2491.2016.28.009.

##submission.downloads##

Опубліковано

2018-11-08

Номер

Розділ

Огляди